	Genomic data visualisation				
UNSW	Dr Jason Wong				
Never Stand Still	Medicine	Prince of Wales Clinical School			

Introductory bioinformatics for human genomics workshop, UNSW Day 1 – Thursday 29th January 2016

ADULT CANCER PROGRAM

Structure of human genome

- Consist of 23 pairs of chromosomes.
- Each chromosome is paired meaning that it is diploid.
- Each individual chromosome made up of double stranded DNA.
- Approximately ~3 billion bases in total.

The size makes the genome difficult to visualise

Why visualise?

• Quality control (QC)

• To help interpret the data.

• Communicate results with others.

What to visualise?

• Two main types:

(1) Visualisation of individual genomic elements. (For example using UCSC)

(2) Visualisation of summary of genomic elements.

What we will cover

- Visualisation of elements genome-wide
 - Circos plots
- Visualisation of summary of NGS data signals
 - Profile plots and heatmaps
- Gene expression data
 - Hierarchical clustering
 - Principal component analysis (PCA)
 - Differential expression (volcano plot)
 - Gene set enrichment analysis (GSEA)

Circos plot

- Provides a visual snapshot of the whole genome.
- Allow visualisation of relationships between different chromosomes.
- Uses tracks just like UCSC genome browser

http://circos.ca/

What making circos plots involve

- Command line tool.
- Instructions are written in a text-based configuration file.

• Some web-based versions such as J-Circos (http://www.australianprostatecentre.org/research/software/jcircos)

NGS profile data

- Many types of NGS data such as RNAseq and ChIP-seq provide quantitative information.
- How to look at signal across multiple loci?

Example – Polll occupancy

Tools for making profiles

- deepTools (<u>http://deeptools.ie-freiburg.mpg.de/</u>)
 - Galaxy based tool
 - Functions to draw profiles as well as tools for QC.
- seqMINER (<u>http://bips.u-strasbg.fr/</u>)
 - Standalone Java-based tool
 - Limited functions but easy to use.
 - But sometimes a bit buggy...

deepTools

Table 1. Overview of currently available deepTools

Tool name	Туре	Input files	Main output	Application	
bamCorrelate	QC	2 or more BAM	Clustered heatmap of similarity measures	Determine Pearson or Spearman correlations between read distributions	
bamFingerprint	QC	2 BAM	Diagnostic plot	Assess enrichment strength of a ChIP-seq sample versus a control	
computeGCBias	QC	1 BAM	Diagnostic plots	Compare expected and observed GC distribution of reads	
correctGCBias	Normalization	1 BAM	BAM or bigWig	Obtain GC-corrected read (coverage) file	
bamCoverage	Normalization	1 BAM	bedGraph or bigWig	Obtain normalized read coverage of a single BAM	
bamCompare	Normalization	2 BAM	bedGraph or bigWig	Normalize 2 BAM files to each other with a mathematical operation of Choice (fold change, log2 (ratio), sum, difference)	
computeMatrix	Visualization	1 bigWig, min. 1 BED	gzipped table	Calculate the values for heatmaps and summary plots	
profiler	Visualization	gzipped table from computeMatrix	xy-plot (summary plot)	Average profiles of read coverage for (groups of) genome regions	
heatmapper	Visualization	gzipped table from computeMatrix	(Un)clustered heatmap or read coverages	Identify patterns of read coverages for genome regions	

Here, we only indicate the main output files, but every data table underlying any image produced by deepTools can be downloaded and used in subsequent analyses. For a comparison of functionalities with previously published web servers, see Supplementary Table S1.

Ramirez et al. Nuc Acids Res. 42:W187-W191

seqMINER

🛓 seqMINER 1.3.3						
File Tools Help						
Density Array Method Er	richment Based Method Advance(R	NA-Seq)				
Step 1: Load data	Step 2: Data extraction Promoters_nmyc_bound_2kb.txt	Step 3: clustering Distribution list.				
coordinates (i.e. peaks) > Browse	▶ 4097 peaks. Peak length mean: 4002	Promoters_nmyc_bound_2kb. Promoters_nmyc_bound_2kb.				
Load aligned reads	Selected datasets:					
DOX-NMYC_trim.extende NT-NMYC_trim.extended DOX-MOUSE_trim.extenc	DOX-NMYC_trim.extended.bo NT-NMYC_trim.extended.bo NT-MOUSE_trim.extended.bo					
NT-MOUSE_trim.extende	DOX-MOUSE_trim.extended.					
		Clustering Normalization:				
Browse		Expected Number 10 of Clusters:				
Load file(s) >>	Extract data	Clustering				
100%						

Ye et al. Nuc Acids Res. 39:e35

Example – distribution of melanoma mutation across gene promoters

🛓 seqMINER 1.3.3					
File Tools Help					
Density Array Method Enrichment Based Method Advance(RNA-Seq)					
Step 1: Load data Load reference coordinates (i.e. peaks) Browse	Step 2: Data extraction Canonical_Gene_name_TSS_ 25417 peaks. Peak length mean: 2	Step 3: clustering Distribution list: Canonical_Gene_name_TSS_			
Load aligned reads Melanoma.bed	Selected datasets: Melanoma.bed				
2.					
	\downarrow	KMeans raw			
Browse	Delete 3.	Expected Number 10 of Clusters:			
Load file(s) >>	Extract data	Clustering			
100%					

🛓 seqMINER 1.3.3					
File Tools Help					
Density Array Method Enrichment Based Method Advance(RNA-Seq)					
Step 1: Load data Load reference coordinates (i.e. peaks)	Step 2: Data extraction	Step 3: clustering Distribution list: Canonical_Gene_name_TSS_			
Browse	Selected datasets:				
Melanoma.bed	Melanoma.bed				
		Clustering Normalization: KMeans raw			
Browse	Delete	Expected Number 3 of Clusters:			
Load file(s) >>	Extract data	Clustering			
		100%			

Visualisation of gene expression data

 Gene expression data is typically generated by <u>microarray</u> or <u>RNA-seq</u>.

 Both used to generate expression level of mRNA in a sample

Things to consider for gene expression analysis

• Gene expression analysis is complex.

- The following usually needs to be considered in addition to visualisation:
 - Data normalisation
 - Batch effect removal
 - Appropriate statistical model for differential gene expression analysis

Hierarchical clustering

- Grouping of samples and/or genes based on similarity.
- Only major parameter is how to measure similarity.
- Effective for seeing how samples are different and whether clusters genes have similar expression profiles.

Principal component analysis (PCA)

- Reduces dimension of the data. (i.e. 20,000 genes into 3D).
- These new dimensions are represented as principal components (PC).
- Each PC captures a certain % of variation between samples such that PC1 captures the most.

Variations of PCA for gene expression analysis exists, such as the GE-biplot.

Data is transformed such that sample and genes are plot on the same axes and their directionality can be directly interpreted.

Pittelkow and Wilson (2003) Stat App Genetics Mol Biol 2:6

Visualising differential gene expression

- Each gene is a fold change and a p-value.
- Plotting these gives a volcano plot.

How to make these plots

- *R* is possibly most commonly used among bioinformaticians.
- Commercial packages such as Partek Genome Studio can also be handy for gene expression data visualisation.
- BUT always a good idea to consult a bioinformatician/biostatisticians who is familiar with gene expression analysis.

Pathway analysis

- Often the end product of gene expression analysis is a list of significant genes.
- Its difficult to look at each gene individually.
- It is usually more meaningful to see if they below to particular biological pathways.

Ingenuity IPA

Pathway analysis example

- Gene B
- Gene H
- Gene K
- Gene P
- Gene X

- Gene E
- Gene G
- Gene K
- Gene Z

Pathway C

- Gene B
- Gene R
- Gene S
- Gene T
- Gene U

Enrichment

Gene set enrichment analysis (GSEA)

- However, sometimes it is difficult to define a list of significant genes.
 - Cutoff might be arbitrary
 - Small sample size can make p-values difficult to interpret
- GSEA is an alterative to standard pathway analysis.

Interpreting GSEA plots

Running GSEA

000	GSEA v2.0.10 (Gene se	t enrichment analysis Bro	ad Institute)				
Steps in GSEA analysis	Home				4 10 10		
Load data	Steps in G	SEA Gene S	et Tools	Getting Help			
Run GSEA	1. What you need f • Expression data se	t Chip2Chip m	apping a sets between	GSEA web site: www.broadinstitute.org/gsea			
Coo Leading edge analysis	 Phenotype annotat Gene sets – use M your own gene sets 	SigDB or CNp2CN	p mapping	GSEA documentation:			
Gene set tools	2. Run GSEA	Explore MSig	DB gene sets	www.coustante.org/growwith			
Chip2Chip mapping	Start with default part of you want to collar or the second	arameters · Search the d ose probes to thousands of	atabase of oene sets	Email the GSEA team:			
💓 Browse MSigDB	3. View results	Data File	Content			Format	Source
GSEA reports	Analysis history Analysis history 4. Leading edge a Carding edge fin: driving enrichmen	Expression Contains dataset samples feature in come fro cDNA, an		ontains features (genes or probes), imples, and an expression value for each ature in each sample. Expression data can ime from any source (Affymetrix, Stanford DNA, and so on).		res, gct, pcl, or txt	You create the file.
Processes: click 'status' field for results		Phenotype Contains labels each sam		ns phenotype labels and associates ample with a phenotype.		cls	You create the file or have GSEA create it for you.
	Gene sets		Contains gene set features	one or more gene set , gives the gene set na (genes or probes) in th	s. For each me and list of at gene set.	gmx or gmt	You use the files on the Broad ftp site, export gene sets from the Molecular Signature Database (MSigDb) or create your own gene sets file.
Show results folder 1:00:27 PM 🛛 🕀 0701 [INFO] Made Vdb di	r: /Users/judymcla/gsea_h	Chip annotations	Lists eac matching the gene	h probe on a DNA chip HUGO gene symbol. (set enrichment analys	and its Optional for is.	Chip	You use the files on the Broad ftp site, download the files from the GSEA web site, or create your own chip file.

• Do you have any other data types that need to be visualised?

Further reading

- Circos
 - <u>www.ncbi.nlm.nih.gov/pubmed/19541911</u>
 - <u>https://www.adelaide.edu.au/bioinformatics-hub/seminars-</u> workshops/notes-handouts/circos.pdf
- deepTools
 - <u>www.ncbi.nlm.nih.gov/pubmed/24799436</u>
- seqMiner
 - www.ncbi.nlm.nih.gov/pubmed/21177645
- Clustering gene expression data
 - <u>www.ncbi.nlm.nih.gov/pubmed/16333293</u>
- GSEA
 - www.ncbi.nlm.nih.gov/pubmed/16199517

